A procedure of Chvátal for testing feasibility in linear programming and matrix scaling
نویسندگان
چکیده
The problems of testing the feasibility of a system of linear inequalities, or strict inequalities, are wellknown to be the most fundamental problems in the theory and practice of linear programming. From Gordan’s Theorem it follows that Ax < b is feasible if and only if the homogeneous problem ATy = 0, bTy + s = 0, (0, 0) / = (y, s) (0, 0), is infeasible. We prove a stronger result: if Ax < b is feasible, then there is a feasible point satisfying x = ATw, for some w < 0. Moreover, there exists a feasible x = ATw satisfying AATw = b + δw−1, where δ is a positive scalar and w−1 = (1/w1, . . . , 1/wn). The existence of w and its computation is motivated by a procedure suggested by Chvátal for solving linear programming as homogeneous problems, as well as results on diagonal matrix scaling of positive semidefinite matrices. Not only these reveal the significance of the homogeneous problem, but also practical and theoretical relevance of Khachiyan and Kalantari’s diagonal matrix scaling algorithm, in computing an interior point of a linear system of inequalities, or in solving linear programming itself, over the reals or the rationals. © 2006 Elsevier Inc. All rights reserved.
منابع مشابه
Fuzzy Linear Programming Method for Deriving Priorities in the Fuzzy Analytic Hierarchy Process
There are various methods for obtaining the preference vector of pair-wise comparison matrix factors. These methods can be employed when the elements of pair-wise comparison matrix are crisp while they are inefficient for fuzzy elements of pair-wise comparison matrix. In this paper, a method is proposed by which the preference vector of pair-wise comparison matrix elements can be obtained even ...
متن کاملNumerical solution of linear control systems using interpolation scaling functions
The current paper proposes a technique for the numerical solution of linear control systems.The method is based on Galerkin method, which uses the interpolating scaling functions. For a highly accurate connection between functions and their derivatives, an operational matrix for the derivatives is established to reduce the problem to a set of algebraic equations. Several test problems are given...
متن کاملA Simple Path-following Algorithm for the Feasibility Problem in Semidefinite Programming and for Matrix Scaling over the Semidefinite Cone
Let E be the Hilbert space of symmetric matrices of the form diag(A,M), where A is n× n, and M is an l× l diagonal matrix, and the inner product 〈x, y〉 ≡ Trace(xy). Given x ∈ E, we write x ≥ 0 (x > 0) if it is positive semidefinite (positive definite). Let Q : E → E be a symmetric positive semidefinite linear operator, and μ = min{φ(x) = 0.5Trace(xQx) : ‖x‖ = 1, x ≥ 0}. The feasibility problem ...
متن کاملA goal programming procedure for ranking decision making units in DEA
This research proposes a methodology for ranking decision making units byusing a goal programming model.We suggest a two phases procedure. In phase1, by using some DEA problems for each pair of units, we construct a pairwisecomparison matrix. Then this matrix is utilized to rank the units via the goalprogramming model.
متن کاملAn interval-valued programming approach to matrix games with payoffs of triangular intuitionistic fuzzy numbers
The purpose of this paper is to develop a methodology for solving a new type of matrix games in which payoffs are expressed with triangular intuitionistic fuzzy numbers (TIFNs). In this methodology, the concept of solutions for matrix games with payoffs of TIFNs is introduced. A pair of auxiliary intuitionistic fuzzy programming models for players are established to determine optimal strategies...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004